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Temperature Sensor Based on Colloidal Quantum
Dots–PMMA Nanocomposite Waveguides

Antonio Bueno, Isaac Suárez, Rafael Abargues, Salvador Sales, and Juan P. Martínez Pastor

Abstract— In this paper, integrated temperature sensors based
on active nanocomposite planar waveguides are presented. The
nanocomposites consist of cadmium selenide (CdSe) and cad-
mium telluride (CdTe) quantum dots (QDs) embedded in a
polymethylmethacrylate (PMMA) matrix. When the samples
are heated in a temperature range from 25 ºC to 50 ºC, the
waveguided photoluminescence of QDs suffers from a strong
intensity decrease, which is approximately quadratic depen-
dent on temperature. Moreover, the wavelength peak of the
waveguided emission spectrum of CdTe-PMMA shows a blue
shift of 0.25 nm/ºC, whereas it remains constant in the case of
CdSe-PMMA. A temperature resolution of 0.1 ºC is obtained. QD
waveguides have great potential for the development of photonic
sensors because of their integration, multiplexing, and roll-to-roll
fabrication capabilities.

Index Terms— Colloidal quantum dots (QDs), nanocomposites,
polymethylmethacrylate (PMMA), temperature sensor.

I. INTRODUCTION

RECENTLY, there is a huge interest in developing a great
variety of integrated photonic devices because of their

application in fields like telecommunication and sensing. For
this purpose, colloidal quantum dots (QDs) are a very attrac-
tive material as an active medium to be integrated in photonic
devices. These nanostructures join the three-dimensional con-
finement of the wave function, characteristic from QDs, with
the feasibility of chemical methods, able to achievenanocrystal
radii from 1 nm to 10 nm with size dispersion as low as
6% [1], [2]. Since the size of the QDs is very small, the
separation of the electronic states is much greater than thermal
energy and the emission of the QDs in colloidal solution
turns to be temperature independent. Moreover, QDs allow the
possibility of tuning their emission wavelength by changing
the size, but also the base material, without modifying the
surface chemistry. Then, the appropriate choice of two or more
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different QDs provides multi-wavelength (or multi-‘color’)
operation, which is a very potential and attractive feature since
it allows the possibility of multiplexing in wavelength several
optical sensors [3].

During the last decade, many researchers have studied the
use of fluorescent QDs in biological applications (as labels
in bioanalysis and diagnostics, tags for proteins and DNA
immunoassays or compatible labels for in-vivo imaging studies
[4]–[7]) since they can modify their surface by conjugation
with the appropriate biomolecules. Moreover, chemical sensors
had been also developed since a desired selectivity can be
obtained by chemically tailoring the outer surface of the
QDs. For instance, a selective ion probe was developed for
sensing Zn2+ and Cu2+ cations [8] and a sensor for explosive
molecules such as TNT or nitrobenzene was presented [9].
In order to achieve the integration of the properties of QDs into
optoelectronic devices, a common approach is to incorporate
them into a host material. These multicomponent materials
are known as nanocomposites. Walker et al. first characterized
the temperature response of the photo-luminescence (PL)
of colloidal QDs immobilized inside apolylaurylmethacrylate
(PLMA) matrix [10] proving the suitability of QDs as tem-
perature references for PL-based sensing applications. Other
authors have also reported the use of different host polymers
such as polystyrene (PS) [11] or polymethylmethacrylate
(PMMA) [12] to embed QDs, and even coupling the light
with the aid of optical fibers [13]. All these works use the PL
of QDs as the sensing parameter, but none of them integrate
the PL response into an optical waveguide, which is the key
step to develop a temperature sensor into a photonic device.

In this paper, we present a temperature sensor based on
the temperature-dependent response of the waveguided PL
of CdSe and CdTe QDs embedded into PMMA thin films.
We describe the fabrication process of planar waveguides
based on QDs and present the experimental setup carried
out in order to perform temperature tests. Finally we show
the temperature characterization of waveguided PL in both
CdSe-PMMA and CdTe-PMMA waveguides from 25 °C
to 50 °C. Peak intensity of the waveguided PL shows a
decreasing quadratic behaviorin both waveguides. Between
both nanocomposites, CdTe-PMMA waveguides showed the
largest response to temperature.

II. FABRICATION

The active waveguide materials chosen for this study were
CdSe and CdTe QDs incorporated into a PMMA matrix.

1530–437X/$31.00 © 2012 IEEE
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Fig. 1. Structure of the fabricated planar waveguides (not to scale).
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Fig. 2. Absorbance spectra for CdSe and CdTe QDs in the colloidal solution.

CdSe was synthesized following the procedure developed
by Peng’s group [14]. CdTe was synthesized in a similar
way, from a solution of tellurium-trioctylphosphine. Once
QDs have been prepared, CdSe-PMMA and CdTe-PMMA
nanocomposite solutions were obtained by mixing PMMA and
QDs, both diluted in toluene. The concentration of QDs in the
polymer was chosen according to a previous study [15], where
filling factors around 5·10−4 had been found to be optimum for
waveguiding. In order to implement the waveguides, nanocom-
posite solutions were spin-coatedon SiO2/Si substrates (as it
is illustrated in Fig. 1) and baked at 80 °C and 150 °C for
2 minutes. The SiO2 layer is prepared by a sol-gel method
[16] resulting in a film of 600 nm thick, acting as a good
low index cladding layer for the optical modes of the core at
the wavelengths of interest (400–600 nm). Finally, the edges
of the samples were cleaved for end fire coupling purposes,
being the edge-to-edge distance of around 5 mm in width and
10 mm in length.

The absorbance spectra of solutions containing CdSe and
CdTe QDs are depicted in Fig. 2. The absorbance spectrum of
CdSe QDs (blue line) has an absorbance peak corresponding
to the ground state exciton transition at 580 nm, whereas
an excited state transition is observed at around 473 nm.
The absorbance is negligible beyond 650 nm and increases
continuously for shorter wavelengths. Similarly, the ground
state exciton peak is observed at 537 nm for CdTe QDs (green
line) and two excited state transitions are resolved at 490 nm
and 430 nm. The absorbance is negligible for wavelengths
longer than 570 nm and increases continuously for shorter
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Fig. 3. Photoluminescence spectra of CdSe and CdTe QDs incorporated in
the colloidal solution and in the PMMA nanocomposite.

wavelengths. According to the absorption data published by
other authors, the exciton peaks at 580 nm for CdSe and at
537 nm for CdTe QDs should correspond to nanocrystal radius
of around 2.5 nm and 1.5 nm respectively [17], [18].

Fig. 3 shows the PL spectra at 25 °C of CdSe (blue lines)
and CdTe (green lines) QDs measured in the colloidal solution
of toluene (solid lines) and in the nanocomposite of PMMA
(dotted lines). They were measured by optical pumping with
a GaN laser diode (404 nm) by back-scattering. The PL line
of CdSe QDs in the colloidal solution is centered at 620 nm
and has a full width at half maximum (FWHM) of 40 nm,
whereas the PL line of the CdTe QDs in the colloidal solution
is centered at 560 nm and has a FWHM of 30 nm. The
red shift of the PL peak with respect to its corresponding
absorption resonance is known as the Stokes shift and it
is typical of semiconductor nanostructures [19]. When the
QDs are embedded in the polymer, the absorbance curves are
similar to the ones depicted in Fig. 2, but a smaller Stokes
shift is measured due to the fact that a certain proportion of
nanoparticles can agglomerate. The PL lines of CdSe and CdTe
QDs in the nanocomposite are centered at 600 nm and 545 nm
respectively, being shifted to shorter wavelengths. These shifts
are a visible sign of the surrounding influence in the emission
of QDs.

III. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 4. The
PLwave-guiding has been characterized by coupling light from
a GaN laser diode centered at 404 nm to both CdSe-PMMA
and CdTe-PMMA planar waveguides. The laser beam was
focused on the surface of the planar waveguides from the
vertical direction in normal incidencewith the aid of a semi-
cylindrical lens. As a result, the beam was focused along the
length of the waveguide in a thin line. Under this condition,
QDs are equally pumped in the whole length of the waveguide,
being its PL coupled to a waveguide mode as it has been
discussed in [15]. The waveguides were placed on the top of
a ceramic resistor used had an electrical resistance of 22 K�
and dimensions of 5 mm × 15 mm. The temperature on the
top of the resistor was obtained by a PT100 electrical sensor
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Fig. 4. Experimental setup carried out in order to perform temperature experiments with CdSe-PMMA and CdTe-PMMA waveguides.

with a resolution of 0.1 °C and controlled by a CAL9300
(CAL Controls) temperature controller.

A microscope objective collects the light at the output
of the waveguide and focuses it to the detection system.
It was mounted in a three-dimensional positioning system
with micrometric resolution in order to improve the light
coupling from the waveguides. Collimated PL light is finally
focused with a semi-cylindrical lens to a multimode optical
fiber attached to the entrance slit of a spectrometer (StellarNet
EPP2000). This spectrometer is capable to acquire a spectrum
in the range from 256 nm to 1100 nm with a resolution of
0.5 nm. The PL spectra were recorded by the spectrometer was
recorded by a specific control software running in a personal
computer.

IV. RESULTS AND DISCUSSION

In a first step, a reference PL spectrum was recorded at room
temperature (25 °C) in the QDs-PMMA waveguides. The wave
guided PL spectrumexhibit some differences compared to the
PL spectrum of the nanocomposite due to the guiding effect
through the sample. The propagating light in the waveguide
can experience a reabsorption phenomenon, leading to a blue
shift and a broadening of the wave guided PL spectrum [15].
In the CdSe-PMMA wave guide a 30 nm blue shift in the PL
peak and a FWHM of 52 nm is measured. In CdTe-PMMA
the wave guided PL spectrum was centered at 540 nm and had
a FWHM of 38 nm.

Then, the wave guides were placed on the top of the ceramic
resistor and the samples were heated in steps of 5 °C up
to a maximum temperature of 50 °C. The PL spectra from
the CdSe-PMMA wave guide at each setting temperature are
depicted in Fig. 5. As it can be seen, the PL intensity strongly
decreases with increasing temperature of the sample. There is
no appreciable shift in the PL peak wavelength and a clear
broadening of 7.6 nm from 25 °C to 50 °C, as it can be
observed in Fig. 6. The CdTe-PMMA waveguide was placed
on top of the ceramic resistor in an identical procedure as
the previous sample. A similar strong decrease of the PL
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Fig. 5. Photoluminescence spectra recorded from the CdSe–PMMA
waveguide at each setting temperature.
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Fig. 6. Temperature dependence of wavelength shift and FWHM of PL
spectrum.

intensity is observed when the sample is heated from 25 °C
to 50 °C, as shown in Fig. 7. Nevertheless, the PL spectrum
of the CdTe-PMMA waveguide experiences a broadening of
14.9 nm and a blue shift of 6.2 nm (Fig. 6).
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Fig. 7. Photoluminescence spectra recorded from the CdTe-PMMA
waveguide at each setting temperature.

The CdSe-PMMA waveguide shows a negligible shift
(within a range of ± 0.5 nm) whereas in the CdTe-PMMA
waveguide an overall blue shift of 6.2 nm is measured, which
means a shift rate of −0.25 nm/°C. Regarding to the FWHM
of the PL spectrum, both materials exhibit an increase. In the
case of the CdSe-PMMA waveguide the broadening increase
is 7.6 nm and nearly double, 14.9 nm, in the case of the
CdTe-PMMA waveguide, corresponding to broadening rates
of 0.3 nm/°C and 0.6 nm/°C respectively. Since colloidal QDs
(dropped cast layers) exhibit typically a smooth wavelength
red shift with temperature, the different wave guided PL
measured from 25 °C to 50 °C can be mainly attributed to the
variations of the optical (refraction index) and morphological
(film roughness) properties of PMMA matrix depending on
the working temperature [20]. The PMMA stability is assured
since there is not weight loss at temperatures below 165 °C and
its elastic regime is up to 195 °C [21]. Moreover, any degra-
dation of the material through the temperature cycles repeated
during several days has not been observed. Concerning the
cross-sensitivity with humidity, it is well known that both
oleate-capped QDs and PMMA are hydrophobic. Therefore,
water absorption by the nanocomposite is estimated to be very
low. Thus, it is expected that humidity does not influence the
measurements under the conditions of our experiment.

Although the temperature range studied is far away from
the glass transition temperature of PMMA (around 105 °C),
heating can provoke the migration of the nanocrystals or even
the modification of the QD’s surface, leading to a decrease of
the PL intensity. In fact, it has already been demonstrated the
decrease of PL in CdSe-PMMA [22], [23] and in CdSe/ZnS
polystyrene composites [11] upon heating. This is explained
by the strain induced in the QDs due to the thermal expansion
of the polymer chains. Indeed, in these works the decrease of
PL is accompanied by a broader FWHM and a red shift of
the emission peak. In this case, CdSe-PMMA does not have
any shift, whereas CdTe-PMMA shows a blue shift. However,
in this case the waveguided PL is influenced as well by the
waveguide properties (thickness, refractive index, losses…).

The refractive index of polymers decreases with temperature
at a rate of 10−4/°C [20], [22], thus when the sample is heated
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Fig. 8. Experimental data and quadratic fit in CdSe-PMMA and CdTe-PMMA
planar waveguides.

long wavelength modes are to be expected at cut-off, dealing
to a blue shift in the spectra. Also, since a waveguide can
propagate more quantity of modes at shorter wavelengths, it
is reasonable that this effect should be stronger in the CdTe-
PMMA waveguide.

Fig. 8 shows the experimental data of the PL peak intensity
versus temperature for both CdSe-PMMA and CdTe-PMMA
waveguides. Quadratic fits of these data have been applied,
obtaining polynomial expressions of PL(%) = 0.058·T (°C)2

−7.87·T (°C) + 260.33 for the CdSe-PMMA waveguide and
PL(%) = 0.13·T (°C)2 − 13.18·T (°C) + 349.53 for the
CdTe-PMMA waveguide. The correlation coefficients obtained
are 0.9978 for the CdSe-PMMA waveguide and 0.9973 for
the CdTe-PMMA waveguide, showing an excellent fit of
the experimental data. These polynomial coefficients state a
higher temperature sensitivity of the CdTe-PMMA waveguide.
The sensitivity in both waveguides depends on the working
temperature due to the decreasing quadratic dependence of
the PL intensity. In the lower temperature range (25–40°)
the highest performance is achieved. In this case the curve
can be approximated by a linear function with slopes of
−4.9% per °C and −6.7% per °C in the CdSe-PMMA and
CdTe-PMMA waveguides respectively. On the other hand, the
lowest performance is achieved in the highest temperature
range (40–55 °C), where the curve shows a quadratic decrease.
The sensitivities obtained in this region are −2.1% per °C
and −0.5% per °C in the CdSe-PMMA and CdTe-PMMA
waveguides respectively. The best temperature resolution is
achieved in the lower temperature range, where the sensitivity
of the sensor is higher. Taking into account this parameter
and the precision of the spectrometer, the best temperature
resolution of this set-up is estimated as 0.1 °C.

V. CONCLUSION

In this work, the feasibility of a temperature sensor based
on nanocomposite wave guides is demonstrated. The recent
advances in colloidal QDs fabrication make the photonic
integration of these nanostructures in polymer hosts possible.
As the surrounding media varied from the colloidal solution to
a polymer matrix, the PL spectrum is temperature dependent
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due to guiding and reabsorption effects of light travelling
through the waveguide.

Temperature sensors based on CdSe and CdTe QDs incor-
porated in PMMA were characterized. The wave guides were
heated in the range from 25 °C to 50 °C and the temperature
characterization of the wave guided PL shows a decrease
in its intensity with quadratic temperature dependence. It
is interesting to note that CdTe-PMMA waveguide presents
more sensitivity and also its wavelength peak suffers from
a temperature dependence of 0.25 nm/°C, whereas remains
constant for the CdSe-PMMA. The possibility of wavelength
multiplexing these sorts of integrated sensors allows a great
number of temperature measurement applications.
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and photovoltaics.
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